Algebraic and Combinatorial Coding Theory

PROCEEDINGS

Fifth International Workshop

June 1-7, 1996
Sozopol, Bulgaria
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.Avgustinovich, F.Solov'eva, Construction of Perfect Binary Codes by the Sequential Translations of the (i)-Components</td>
<td>9</td>
</tr>
<tr>
<td>S.Avgustinovich, F.Solov'eva, Existence of Nonsystematic Perfect Binary Codes</td>
<td>15</td>
</tr>
<tr>
<td>Ts.Baicheva, Least Covering Radii of Ternary Linear Codes</td>
<td>20</td>
</tr>
<tr>
<td>L.Bassalygo, M.Pinsker, Constant Weight Codes Detecting Localized Errors</td>
<td>25</td>
</tr>
<tr>
<td>T.Berger, P.Charpin, Permutation groups of some affine-invariant codes over extension fields</td>
<td>27</td>
</tr>
<tr>
<td>S.Bezzateev, N.Shekhunova, One Construction of Quasi-Cyclic Codes</td>
<td>34</td>
</tr>
<tr>
<td>F.Blanchet, G.Bommier, Quasi-cyclic binary Goppa codes</td>
<td>37</td>
</tr>
<tr>
<td>V.Blinovsky, Estimation of the spectrum of random linear code</td>
<td>43</td>
</tr>
<tr>
<td>V.Blinovsky, Exponent of the Probability of Error Under List Decoding in Asymmetric Binary Channel</td>
<td>44</td>
</tr>
<tr>
<td>G.Bogdanova, Optimal Codes over an Alphabet of 4 Elements</td>
<td>46</td>
</tr>
<tr>
<td>M.Boguslavsky, On the number of points on an algebraic set</td>
<td>54</td>
</tr>
<tr>
<td>Y.Borissov, N.Manev, On the Minimal Words of the Primitive BCH Codes</td>
<td>59</td>
</tr>
<tr>
<td>I. Boukliev, S.Dodunekov, T.Helleseth, Ø.Ytrehus, Two New Binary Optimal 8-Dimensional Codes</td>
<td>66</td>
</tr>
<tr>
<td>P.Boyvalenkov, S.Bunova, D.Danev, P.Kazakov, A Program for Obtaining LPB for Spherical Codes</td>
<td>68</td>
</tr>
<tr>
<td>P.Boyvalenkov, D.Danev, On Upper Bounds for the Size of Codes in Polynomial Metric Spaces</td>
<td>71</td>
</tr>
<tr>
<td>P.Boyvalenkov, S.Nikova, Some Characterizations of Spherical Designs with Small Cardinalities</td>
<td>77</td>
</tr>
<tr>
<td>S.Buyuklieva, A Method for Constructing Self-Dual Codes with Applications to Length 64</td>
<td>81</td>
</tr>
<tr>
<td>C.Carlet, P.Guillot, A characterization of binary bent functions</td>
<td>86</td>
</tr>
</tbody>
</table>
P. Charpin, A. Teitavainen, V. Zinoviev, On Binary Cyclic Codes with Minimum Distance Three ... 93

I. Constantinescu, W. Heise, T. Honold, Monomial Extensions of Isometries between Codes over \(\mathbb{Z} \) .. 98

A. Davydov, On Nonbinary Linear Codes with Covering Radius Two ... 105

R. Daskalov, The non-existence of ternary linear [158,6,104] and [203,6,134] codes .. 111

R. Dodunekova, S. Dodunekov, Linear Block Codes for Error Detection ... 117

A. Dyachkov, Upper Bounds on Error Probability of Linear Codes for the Constant-Weight Noisy Channel 123

R. Eriksson, Performance analysis of the binary wiretap channel ... 129

A. Faldum, W. Willems, Codes of Maximum Minimum Distance ... 135

S. Hjelm, An Anti-Jamming System for Slow Frequency Hopping .. 138

S. Hoest, V. Sidorenko, Some Structural Properties of Cascaded Convolutional Codes .. 146

S. Kapralov, Enumeration of the Binary Linear [24,7,10] Codes ... 151

P. Kazakov, Software System GFQ - Conceptions and Realization ... 157

E. Kolev, Binary mapped Reed-Solomon codes and their weight distribution ... 161

I. Landgev, The Geometry of \((n,3)\)-Arcs in the Projective Plane of Order 5 ... 170

V. Levenshtein, Reconstructing Binary Sequences by the Minimum Number of Their Subsequences or Supersequences of a Given Length .. 176

R. Lucas, M. Bossert, M. Breithbach, H. Griessler, On Iterative Soft Decision Decoding of Binary QR Codes ... 184

Kr. Manev, R. Stefanov, Yet Another Algorithm for Addition of Vectors in Non Binary Finite Field ... 190

G. Markarian, B. Honary, P. Benachour, A New DC-Free Code and its Trellis Decoding in Binary Adder Channel ... 194
J. Maucher, On i-Cyclic Codes and Their Mannheim Weight
A. Nechaev, A. Kuzmin, \(\mathbb{Z}_4 \)-Linearity, Two Approaches
N. Nicolov, Error-Correcting Codes as Abstract Classes
R. Nogueroles, M. Bossert, V. Zyablov, Multiple Access and Collision Problem in Multifrequency Transmission Systems
J. Olsson, On Near-Near-MDS Codes
M. Pinsker, V. Prelov, E. van der Meulen, Information Rates in Certain Stationary Non-Gaussian Channels
R. Ruseva, On Extremal Self-Dual Binary Codes of Length 38 with an Automorphism of Order 7
V. Radeva, V. Yorgov, N. Ziapkov, Some New Extremal Binary Codes of Length 36
Yu. Sagalovich, Latest Results on the Algebraic Diagnosis
Hr. Sendov, D. Kreher, A Graph Decomposition Theorem
V. Sidelnikov, S. Strunkov, A. Klyachko, On Orbit Codes in Matrix Spaces
V. Sidorenko, The Viterbi Decoding Complexity of Group and Some Nongroup Codes
M. Svanström, A Ternary Code from Orthogonal Vectors over the Complex Numbers
V. Tonchev, A Characterization of the Hermitian and Ree Unitals of Order 3
V. Tonchev, V. Yorgov, The existence of certain extremal [54,27,10] self-dual codes
S. Topalova, Enumeration of 2-(25,5,2) Designs with Automorphisms of Order 5 without Fixed Points and with 5 or 10 Fixed Blocks
M. van Eupen, V. Tonchev, Linear Codes and The Existence of a Reversible Hadamard Difference Set in \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \)
A. J. van Zanten, On the Construction of Distance-Preserving Codes
V. Yorgov, N. Yankov, On the Extremal Binary Codes of Lengths 36 and 38 with an Automorphism of Order 5
On the Extremal Binary Codes of Lengths 36 and 38 with an Automorphism of Order 5*

Vassil Yorgov and Nikolay Yankov

Konstantin Preslavsky University
Shoumen 9712, Bulgaria

Abstract

All inequivalent binary self-dual [36,18,8] codes with automorphism of order 5 are obtained. It is proved that there does not exist a [38,19,8] self-dual binary code with automorphism of order 5.

1 Introduction

The weight enumerators of self-dual codes of length 36 and 38 with minimal weight 8 are known [1]. For length 36 we have two enumerators:

\[(1) \quad 1 + 225y^8 + 2016y^{10} + 9555y^{12} + 28800y^{14} \cdots \]

*This work is partially supported by the Bulgarian National Science Fondation under Contract MM-503/95
and

\[1 + 289y^8 + 1632y^{10} + 10387y^{12} + 28288y^{14} \cdots \]

The codes \(R_2 \) and \(D_3 \) given in [1] have weight enumerators (1) and (2), respectively, and the two possible weight enumerators for length 38 are realized by the codes \(D_4 \) and \(R_3 \). In [6, 2] it is proved that \(D_3 \) and \(D_4 \) are unique double circulant extremal codes for these lengths. All possible odd prime factors of the order of the group of automorphisms of an extremal code of length 36 and 38 are 17, 7, 5, 3 and 19, 7, 5, 3 respectively [7, 8]. It is proved there that there are correspondingly 3 and 7 extremal codes of length 36 and 38 which have automorphism of order 7. Here we consider codes with automorphism of order 5.

2 Codes of length 36

Let \(C \) be a \([36, 18, 8]\) self-dual code with automorphism \(\sigma \) of order 5. It is known [6] that \(\sigma \) fixes exactly 6 points. We may assume that \(\sigma = (1, 2, 3, 4, 5)(5, 6, 7, 8, 9, 10) \cdots (26, 27, 28, 29, 30) \). Let \(E_\sigma(C) \) be the set of those vectors in \(C \) which have even weight in each cycle of \(\sigma \) and zeros in the fixed points. Denote \(F_\sigma(C) = \{ v \in C | v_\sigma = v \} \). It is known that \(C = F_\sigma(C) \oplus E_\sigma(C) \).

For \(v \in F_\sigma(C) \) let \(\nu v \) be the vector of length 12 obtained from \(v \) by choosing a coordinate from each cycle of \(v \) and from each of the last 6 points. It is known that \(\pi(F_\sigma(C)) \) is a self-dual binary code [3]. All such codes are enumerated in [4]. In the notation used there \(\pi(F_\sigma(C)) \) is equivalent to one of the codes \(C_2^6 \), \(C_2^2 \oplus A_8 \), and \(B_{12} \). As \(\pi(F_\sigma(C)) \) does not have a weight two vector with two ones in the last 6 positions, it cannot be equivalent to \(C_2^6 \) or \(C_2^2 \oplus A_8 \).
Lemma 1 Up to a permutation of the last 6 coordinates the code $\pi(F_\sigma(C))$ is generated by one of the matrices F_1, F_2:

$$
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
\end{pmatrix},
$$

Proof. Call a duo any pair of coordinates. A cluster for a code is a set of disjoint duos such that the union of any two duos is a support of a weight 4 vector of the code. A d-set of a cluster is a set of coordinates such that its intersection with each duo of the cluster is an one element set. A defining set of a code consist of a cluster and a d-set provided that the weight 4 vectors arising from the cluster and the vector with support the d-set generate the code. B_{12} has a defining set. Each permutation which is a product of transpositions in even number of duos of the defining set is an automorphism of B_{12}. Since the minimal weight of C is 8, two duos of the cluster cannot be in the last 6 positions of $\pi(F_\sigma(C))$. There are two cases.

In the first case we assume that there is not a duo in the last 6 positions. Clearly the d-set cannot be in the last 6 positions. Using an appropriate automorphism of the above mentioned type we obtain that 5 coordinates of the d-set are in the last 6 positions of $\pi(F_\sigma(C))$. This leads to the first matrix of Lemma 1.

Secondly we consider the case when only one duo of B_{12} is in the last 6 positions of $\pi(F_\sigma(C))$. Hence there is also a duo in the first 6 positions. This leads to the second matrix.

Let $E_\sigma(C)^*$ be $E_\sigma(C)$ with the last 6 points deleted. Every vector v from $E_\sigma(C)^*$ has even weight in each cycle of σ. All words of length 5 of even weight form an irreducible cyclic
code which we denote by P. The non zero elements of P are
given in table 1. They can be considered as polynomials on
x. P is a field with primitive element α. Denote by $\phi(v)$ the

α^3	11110	α^4	10001	α^5	01001
α^6	11101	α^7	00011	α^8	10010
α^9	11011	α^{10}	00110	α^{11}	00101
α^{12}	10111	α^{13}	01100	α^{14}	01010

vector v considered as a 6-tuple with elements from P. It is
known [3] that $\phi(E_\sigma(C)^*)$ is a [6,3] code which is self-dual
under the inner product

$$(u, v) = u_1v_1^4 + u_2v_2^4 + \cdots + u_6v_6^4$$

and next lemma holds.

Lemma 2 The following transformations applied to C lead
to an equivalent code with automorphism σ:
(a) a substitution $x \to x^t$ in $\phi(E_\sigma(C)^*)$, $1 \leq t \leq 4$;
(b) a multiplication of any coordinate of $\phi(E_\sigma(C)^*)$ by α^{12};
(c) a permutation of the first 6 cycles of σ;
(d) a permutation of the last 6 coordinates of C.

The proof of the next lemma is omitted.

Lemma 3 Every $[6,3, d \geq 3]$ code over the field P which is
self-dual under the inner product (3) is equivalent under the
transformations (a), (b), and (c) to one of the two codes with
generator matrices:

$$E_1 = \begin{pmatrix} e & 0 & 0 & 0 & \alpha^5 & \alpha^{10} \\
0 & e & 0 & \alpha^5 & \alpha^5 & e \\
0 & 0 & e & \alpha^{10} & e & \alpha^{10} \end{pmatrix} \quad \text{and} \quad E_2 = \begin{pmatrix} e & 0 & 0 & e & \alpha^5 & \alpha^5 \\
0 & e & 0 & e & \alpha^2 & \alpha^8 \\
0 & 0 & e & \alpha^6 & \alpha^9 \end{pmatrix}.$$
Denote by C_{ij}, $1 \leq i \leq 2$, $1 \leq j \leq 2$, the code determined by the matrices F_i and E_j. A computer check shows that these 4 codes are extremal. The codes C_{11} and C_{12} have enumerator (1) and the codes C_{21} and C_{22} have enumerator (2). Thus we obtain

Theorem 1 Up to equivalence the codes C_{11}, C_{12}, C_{21}, and C_{22} are the only self-dual [36,18,8] codes having automorphism of order 5.

Remark. The codes C_{11}, C_{12}, and C_{21} are inequivalent. It is an open problem whether C_{21}, and C_{22} are equivalent.

3 Codes of length 38

Theorem 2 There does not exist a [38,19,8] self-dual code with automorphism of order 5.

Proof. Assume C is such a code with automorphism σ of order 5. It is known that σ must fix 8 points. Now $\pi(F_\sigma(C))$ is a self-dual code of length 14. There are 4 inequivalent such codes: C_2^7, $C_2^3 \oplus A_8$, $C_2 \oplus B_{12}$, and D_{14} [4]. It is easy to be seen that $\pi(F_\sigma(C))$ is not equivalent to C_2^7, $C_2^3 \oplus A_8$, and $C_2 \oplus B_{12}$. It remains that $\pi(F_\sigma(C))$ is equivalent to D_{14}. Consider a generator matrix of $\pi(F_\sigma(C))$ of the form

\[
\begin{array}{cc}
A & 0 \\
0 & B \\
D & E
\end{array}
\]

where the matrices A, B, D, and E are of types $k_a \times 6$, $k_b \times 8$, $k_d \times 6$, and $k_e \times 8$ with k_a, k_b, k_d, and k_e being the ranks of A, B, D, and E, respectively. It is known [5, p.175] that $k_d = k_e$, $2k_a + k_d = 6$, and $2k_b + k_e = 8$. Hence $k_b = k_a + 1$ and $k_b \geq 1$. As B must generate a code of minimal weight at
least 8 we conclude that $k_b = 1$. Hence $B = (11111111)$ and $k_a = 0$. As the all one vector belongs to $\pi(F_{\sigma}(C))$ the vector 11111100000000 must be in $\pi(F_{\sigma}(C))$ too. This is in conflict with $k_a = 0$. The theorem is proved.

References

