Determination of the weight enumerator for optimal binary self-dual codes of length 52^1

NIKOLAY YANKOV

jankov_niki@yahoo.com

Faculty of Mathematics and Informatics, Shumen University, Shumen, BULGARIA

Abstract. In this paper we give full classification of all binary [52, 26, 10] self-dual codes with an automorphism of order 5. This completes the classification of all such codes with an automorphism of odd prim order p > 3. There are exactly 18777 such codes having an automorphism of type 5 - (10, 2). One of the constructed codes have weight enumerator $W_{52,2}$ for $\beta = 10$ thus completely determines the weight enumerators for which there exists a binary self-dual [52, 26, 10] code.

1 Introduction

We apply a method for constructing binary self-dual codes possessing an automorphism of odd prime order from [3] and [6].

Let C be a binary self-dual code of length n with an automorphism σ of prime order $p \geq 3$ with exactly c independent p-cycles and f = n - cp fixed points in its decomposition. We may assume that

$$\sigma = (1, 2, \dots, p)(p+1, p+2, \dots, 2p) \cdots (p(c-1)+1, p(c-1)+2, \dots, pc),$$

and shortly say that σ is of type p-(c,f). Let $\Omega_1, \ldots, \Omega_c$ are the p-cycles of σ and $\Omega_{c+1}, \ldots, \Omega_{c+f}$ – the fixed points. Define

$$F_{\sigma}(C) = \{ v \in C \mid v\sigma = v \},$$

$$E_{\sigma}(C) = \{v \in C \mid \operatorname{wt}(v|\Omega_i) \equiv 0 \pmod{2}, i = 1, \dots, c + f\},\$$

where $v|\Omega_i$ is the restriction of v on Ω_i .

Theorem 1. [3]
$$C = F_{\sigma}(C) \oplus E_{\sigma}(C)$$
, $\dim(F_{\sigma}) = \frac{c+f}{2}$, $\dim(E_{\sigma}) = \frac{c(p-1)}{2}$.

We have that $v \in F_{\sigma}(C)$ iff $v \in C$ and v is constant on each cycle. Let $\pi : F_{\sigma}(C) \to \mathbb{F}_2^{c+f}$ be the projection map where if $v \in F_{\sigma}(C)$, $(v\pi)_i = v_j$ for some $j \in \Omega_i$, $i = 1, 2, \ldots, c + f$.

¹This research is by Shumen University under Project RD-05-274/15.03.12

Theorem 2. [7] A binary [n, n/2] code C with an automorphism σ is self-dual if and only if the following two conditions hold:

(i) $C_{\pi} = \pi(F_{\sigma}(C))$ is a binary self-dual code of length c + f,

(ii) for every two vectors $u, v \in C_{\varphi} = \varphi(E_{\sigma}(C)^*)$ we have $\sum_{i=1}^{c} u_i(x)v_i(x^{-1}) = 0$. If 2 is a primitive root modulo p then C_{φ} is a self-dual code of length c over

If 2 is a primitive root modulo p then C_{φ} is a self-dual code of length c over the field $\mathcal{P} \cong \mathbb{F}_{2^{p-1}}$ under the inner product $(u,v) = \sum_{i=1}^{c} u_i v_i^{2^{(p-1)/2}}$.

Denote by $E_{\sigma}(C)^*$ the code $E_{\sigma}(C)$ with the last f coordinates deleted. So $E_{\sigma}(C)^*$ is a self-orthogonal binary code of length pc. For v in $E_{\sigma}(C)^*$ we let $v|\Omega_i=(v_0,v_1,\cdots,v_{p-1})$ correspond to the polynomial $v_0+v_1x+\cdots+v_{p-1}x^{p-1}$ from \mathcal{P} , where \mathcal{P} is the set of even-weight polynomials in $\mathbb{F}_2[x]/\langle x^p-1\rangle$. Thus we obtain the map $\varphi:E_{\sigma}(C)^*\to\mathcal{P}^c$. \mathcal{P} is a cyclic code of length p with generator polynomial x-1.

For [52, 26, 10] self-dual codes there are two possible weight enumerators:

$$W_{52,1}(y) = 1 + 250y^{10} + 7980y^{12} + 42,800y^{14} + \cdots,$$
 (1)

$$W_{52,2}(y) = 1 + (442 - 16\beta)y^{10} + (6188 + 64\beta)y^{12} + 53,040y^{14} + \cdots,$$
 (2)

where $0 \le \beta \le 12$, $\beta \ne 11$ [1]. Codes exist for $W_{52,1}$ and for $W_{52,2}$ when $\beta = 1, ..., 9, 12$ [8].

2 The subcode $E_{\sigma}(C)^*$

Let C be a binary self-dual code with minimum distance $d \geq 10$, possessing an automorphism of order 5 with 10 cycles. Using Theorem 2 we have that the subcode C_{φ} is a self-dual code of length 10 over the field \mathcal{P} under the inner product

$$(u,v) = \sum_{i=1}^{10} u_i v_i^4.$$
 (3)

Since 2 is a primite root modulo 5, \mathcal{P} is a finite field with 16 elements, $\mathcal{P} \cong \mathbb{F}_{16} = \{0, \alpha^k | k = 0, 14\}$, where $e = x + x^2 + x^3 + x^4$, $\alpha = x + 1$ is a primitive element of multiplicative order 15. Denoting by $\delta = \alpha^5$ an element of multiplicative order 3 we list the elements of \mathcal{P} in Table 1.

The proof of the following statements is omitted.

Proposition 1. Let C_{φ} be a [10,5] code over \mathcal{P} , self-dual under the orthogonality condition (3), such that $E_{\sigma}(C)$ is a code with minimum distance at least

Yankov 343

Table 1: The field $\mathcal{P} \cong \mathbb{F}_{16}$								
e	01111	α	11000	α^2	10100			
α^3	11110	α^4	10001	α^5	01001			
α^6	11101	α^7	00011	α^8	10010			
α^9	11011	α^{10}	00110	α^{11}	00101			
α^{12}	10111	α^{13}	01100	α^{14}	01010			

10. Then the generator matrix of C_{φ} in standard form is

$$G_{\varphi} = \begin{pmatrix} e & 0 & 0 & 0 & a_{16} & a_{17} & a_{18} & a_{19} & a_{1,10} \\ 0 & e & 0 & 0 & 0 & a_{26} & a_{27} & a_{28} & a_{29} & a_{2,10} \\ 0 & 0 & e & 0 & 0 & a_{36} & a_{37} & a_{38} & a_{39} & a_{3,10} \\ 0 & 0 & 0 & e & 0 & a_{46} & a_{47} & a_{48} & a_{49} & a_{4,10} \\ 0 & 0 & 0 & e & a_{56} & a_{57} & a_{58} & a_{59} & a_{5,10} \end{pmatrix}, \tag{4}$$

 $a_{1i} \in \{0, e, \delta, \delta^2\}, i = 6, \dots 10, a_{j6} \in \{0, e, \delta, \delta^2\}, j = 1, \dots 6.$ Furthermore $(a_{16}, a_{17}, a_{18}, a_{19}, a_{1,10})$ is one of the following vectors $(0, e, e, \delta, \delta^2), (e, e, e, e, e), (e, \delta, \delta, \delta, \delta), (e, \delta, \delta, \delta^2, \delta^2), (e, e, e, e, \delta, \delta).$

A computer program for computing all possible generator matrices from Proposition 1, using also the orthogonality condition (3), was constructed. The result is the following.

Theorem 3. There exist exactly 56 inequivalent [10,5] codes over P such that $E_{\sigma}(C)^*$ is a code with minimum distance at least 10. All codes can be obtained using $(e, \delta, \delta, \delta, \delta)$ as $(a_{16}, \ldots, a_{1,10})$ for the first row in G_{φ} .

Denote the generator matrices of the codes from Theorem 3 by H_i , $i = 1, \ldots, 56$. The elements $a_{26}, \ldots, a_{5,10}$ for the matrices H_i are listed in Table 4, where the hexadecimal $h = 0, \ldots e$ denote α^h , whereas f denotes the zero of \mathcal{P} .

3 Binary self-dual [52, 26, 10] codes with an automorphism of order 5

Let C be a binary self-dual [52, 26, 10] code, possessing an automorphism of order 5. According to [4, Table 2] the possibilities for the cycle structure of the automorphism of order 5 is to be of type 5 - (10, 2), i.e.

$$\sigma = (1, 2, \dots, 5)(6, 7, \dots, 10) \dots (46, 47, \dots, 50).$$

According to Theorem 2 the subcode C_{π} is a binary self-dual $[12, 6, \geq 2]$ code. There are three such codes, namely $6i_2$, $2i_2+e_8$, and d_{12} [5] with generator

	· · · · · · · · · · · · · · · · · · ·	
$H_1 00028007 \text{e} f 08d540953 \text{e}$	$H_2 00028007 \text{ef} 5262859 \text{fc} 7$	$H_3 00028007 \text{ef} 5617558 \text{bf} 1$
H_4 00028007efa02e1a5d38	$H_5 00028014d751a4f52b9b$	H_6 000280157203b080fe46
H_7 0002801572a1c82ae3f6	H_8 0002801572a2438aa1d9	$H_9 00028016915191252e4f$
H_{10} 00028016915af3c5e4c7	H_{11} 0002801691a137dae2d9	$H_{12} 0002801691a20e1aabb0$
$H_{13} 00028019 \text{fb} 03 \text{ebc} 0 \text{fc} 15$	$H_{14} 00028019 \text{fb} 51 \text{bd} 352628$	H_{15} 00028019fb5a14f5ef5d
H_{16} 00028019fba182caec4b	H_{17} 00028019fba2ed9aa055	H_{18} 0002802715a5d38ab2a3
H_{19} 00028028aaa56f6ab3e1	H_{20} 0002802d8d51ea95a4f1	$H_{21} 0002802 d8 d529005 ef5 d$
H_{22} 0002802d8da572cab867	$H_{23} 0002803b08589285c0e6$	$H_{24} 0002803b08a0a55a84b0$
H_{25} 0002803b08acb9fae8ca	H_{26} 0002803ebc507845e4c7	H_{27} 0002803ebca02e1a8eca
H_{28} 0002803ebcac182aea0e	H_{29} 0002803f54a0ccaa812c	$H_{30} 00028056 \text{bc} 5290058 \text{ee} 6$
$H_{31} 00028056 \text{bc} 5648459 \text{fc} 7$	H_{32} 00028069aa54b6a5f6d3	$H_{33} 00028069aaa084babc9f$
H_{34} 00069002ce087fc09470	H_{35} 00069002cea0c6da59e4	H_{36} 00069014eb082aa0d714
H_{37} 000690160da13beae201	H_{38} 000690160da202aaab32	$H_{39} 0006901961a2e01aa055$
H_{40} 00069028aa51b8f5a8dc	H_{41} 0006902d3f529005ef24	H_{42} 0006903bceacbe4ae86d
H_{43} 0006903e95a022aa8e6d	H_{44} 000690be14a42dfaae8c	H_{45} 0016d00a435671558fb1
H_{46} 0016d00c2e02ba4067a3	H_{47} 0016d01725a1f87aed86	H_{48} 0016d01ae808ea10d610
H_{49} 0016d01c0aa15b6aea0e	H_{50} 0016d0e1b4a1f87aaa5f	H_{51} 001ac01ac05a7235ef42
H_{52} 012570bf915053c51405	H_{53} 015cf0d2d8563385b5f7	H_{54} 5012d530b959d545b2c5
H_{55} 501455305c554105c503	H_{56} 501455305cadd0aaf5dd	

Table 2: Generators elements of H_i , i = 1, ..., 56

matrices

respectively.

In these three codes we have to arrange 10 of the coordinate positions $\{1,\ldots,12\}$ to be the cycle positions X_c and 2 to be the fixed points X_f , in such a way, that the minimum distance of $F_{\sigma}=\pi^{-1}(C_{\pi})$ is at least 10. It is obvious that any choice of two fixed coordinates in B_1 will lead to a word with weight 2 or 6. After calculating all subcodes F_{σ} for each of the two remaining codes we have three different generators. Denote $G_1=B_2$, $G_2=B_3$, and G_3 – the matrix B_3 with columns permuted by (10, 11).

We have constructed the two direct summands for the code C and next we have to attach them together. Let the subcode $E_{\sigma}(C)^*$ is fixed as generated by H_j , j = 1, ..., 56. We have to consider different possibilities for the second subcode $F_{\sigma}(C)$ with generator matrix G_i , i = 1, 2, 3. Let St_i , i = 1, 2, 3 be the subgroup of symmetric group S_{10} consisting of all permutations on the first ten coordinates, which are induced by an automorphism of the code generated by

Yankov 345

Table 3: Order of automorphism groups for [52, 26, 10] codes

$ \operatorname{Aut}(C) $	5	10	50	150
#	18208	566	2	1

 G_i .

For a permutation $\tau \in S_{10}$, denote by $C_{i,j}^{\tau}$, i = 1, 2, 3, j = 1, ..., 56 the [52, 26] self-dual code determined by the matrix G_i , as a generator for $F_{\sigma}(C)$ and H_j with columns permuted by τ as a generator matrix for $E_{\sigma}(C)$. It is easy to see that if τ_1 and τ_2 belong to one and the same right coset of S_{10} to G_i , then the codes $C_{i,j}^{\tau_1}$ and $C_{i,j}^{\tau_2}$ are equivalent. We need only to consider $\tau \in S_{10}$ from the right transversal T_i , i = 1, 2 of S_{10} with respect to S_i , i = 1, 2, 3.

Case 1. F_{σ} generated by G_1 . St_1 is a group of cardinality 384, generated by the permutations (2,8)(3,6,10,5), (2,8)(3,4,5)(6,10,9), (3,10)(4,9)(5,6), (1,2)(3,10)(4,9)(5,6)(7,8). The transversal T_1 have 9450 elements. There are exactly 10486 inequivalent codes with weight enumerator $W_{52,2}$: 9881 with $\beta = 0$; 604 with $\beta = 5$; and one code with $\beta = 10$.

Remark: The code with $\beta = 10$ is generated by H_{42} and G_1 permuted by (1, 2, 6, 8, 10, 3)(5, 7). This code have automorphism group of order 5.

Case 2. F_{σ} generated by G_2 . Then $St_2 = \langle (5,6), (4,5)(6,10), (3,4)(9,10), (2,3)(8,9), (1,2)(7,8) \rangle$ have 3840 elements. So the transversal T_2 have 945 elements. There exist exactly 147 inequivalent codes all with weight enumerator $W_{52,1}$.

Case 3. F_{σ} generated by G_3 . $St_3 = \langle (2,8)(3,6,9,5), (1,2,3,7,8,9)(4,10)(5,6) \rangle$ is a group with 384 elements, $|T_3| = 9450$. We constructed exactly 8144 inequivalent codes. Their weight enumerator is $W_{52,2}$: 7624 codes for $\beta = 2$, and 520 codes for $\beta = 7$.

Proposition 2. There are exactly 18777 inequivalent binary [52, 26, 10] self-dual codes having an automorphism of type 5 - (10, 2). One of these codes have weight enumerator $W_{52,2}$ for $\beta = 10$.

Theorem 4. There exists an optimal binary self-dual [52, 26, 10] code with weight enumerator W if and only if $W = W_{52,2}$ in (2) with $\beta \in [0..12]$, $\beta \neq 11$ or W is given by (1).

We list the order of the automorphism groups of all constructed codes in Table 3 and their weight enumerators in Table 4. The two codes with an automorphism group of size 50 constructed here are known. They are the pure double-circulant self-dual codes $P_{50,1}$ and $P_{50,2}$ from [2, Table 2]. All other 268 codes are new.

0			L	, ,
#	A_{10}	A_{12}	$W_{52,i}$	β
147	250	7980	$W_{52,1}$	-
9881	442	6188	$W_{52,2}$	0
7624	410	6316	$W_{52,2}$	2
604	362	6508	$W_{52,2}$	5
520	330	6636	$W_{52,2}$	7
1	282	6828	$W_{52,2}$	10

Table 4: Weight enumerators of all [52, 26, 10] codes

References

- [1] St. Bouyuklieva, M. Harada, A. Munemasa, Restrictions on the weight enumerators of binary self-dual codes of length 4m, Proc. Int. Workshop OCRT, White Lagoon, Bulgaria, 40–44, 2007.
- [2] M. Harada, T.A. Gulliver, H. Kaneta, Classification of extremal double circulant self- dual codes of length up to 62, *Discrete Math.*, **188**, pp. 127–136, 1998.
- [3] W.C. Huffman, Automorphisms of codes with application to extremal doubly-even codes of length 48, *IEEE Trans. Inform. Theory*, **28**, 511–521, 1982.
- [4] W.C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Appl., 11, 451–490, 2005.
- [5] W.C. Huffman, V. Pless, Fundamentals of error correcting codes, *Cambridge University Press* (2003).
- [6] V. Yorgov, A method for constructing inequivalent self-dual codes with applications to length 56, *IEEE Trans. Inform. Theory*, **33**, 77–82, 1987.
- [7] V. Yorgov, Binary self-dual codes with an automorphism of odd order, *Problems Inform. Transm.*, 4, 13–24, 1983
- [8] N. Yankov, New optimal [52, 26, 10] self-dual codes, to appear in Designs, Codes and Cryptography, DOI: 10.1007/s10623-012-9639-9